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Abstract. We consider the possibility of formation of an unconventional spin density wave (USDW) in
quasi-one-dimensional electronic systems. In analogy with unconventional superconductivity, we develop a
mean field theory of SDW allowing for the momentum dependent gap ∆(k) on the Fermi surface. Conditions
for the appearance of such a low temperature phase are investigated. The excitation spectrum and basic
thermodynamic properties of the model are found to be very similar to those of d-wave superconductors
in spite of the different topology of their Fermi surfaces. Several correlation functions are calculated, and
the frequency dependent conductivity is evaluated for various gap functions. The latter is found to reflect
the maximum gap value, however with no sharp onset for absorbtion.

PACS. 75.30.Fv Spin-density waves – 71.45.Lr Charge-density-wave systems – 78.30.Jw Organic
compounds, polymers

1 Introduction

As a result of intense research during the past few decades,
much is known about the properties of density waves pos-
sessing a constant ∆ order parameter [1]. On the other
hand it is well known that wavevector dependent order pa-
rameters ∆(k) taking different values at different points
on the Fermi surface play an important role in theories
of superconductivity (termed unconventional) [2] in vari-
ous systems including the high-Tc cuprates [3]. Therefore
the need to work out the theory of unconventional density
waves follows naturally from these precedents.

This project however is not just of academic inter-
est. Heavy-fermion compounds have long been suspected
of possibly having wavevector dependent SDW gap on a
three-dimensional nested Fermi surface [4]. The anoma-
lously small magnetic moment in URu2Si2 [5] was sug-
gested to be explained among other possibilities [6,7] by
unconventional SDW on a quasi-two-dimensional (square)
Fermi surface [8]. The basis of this suggestion is the fact
that an USDW is in fact not a spin density wave at all,
since it is not accompanied by periodic spin density mod-
ulation. The order parameter of the phase transition is
not the spin density itself, but another well defined quan-
tity related to the spin density much the same way as
the “effective density” responsible for electronic Raman
scattering is related to the density operator [9,10]. As an-
other signature of an unconventional density wave (DW),
low energy excitations due to a DW gap vanishing on
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certain subsets of the Fermi surface may be responsible
for the absence of a clear optical gap in the reflectivity
data of some of the heavy-electron materials [11], includ-
ing URu2Si2. Optical data with similar features in the
low temperature phase of quasi-one-dimensional Mo4O11

indicate again the possibility of an unconventional charge
density wave (UCDW) state [12,13].

Other candidates for unconventional DW states include
the organic conductor α-(BEDT-TTF)2KHg(SCN)4,
where in spite of a clear indication for a phase transition in
magnetotransport measurements neither charge nor mag-
netic order has been established [14–16], the transition-
metal dichalcogenide 2H-TaSe2 with its momentum
dependent CDW gap inferred from angle resolved photoe-
mission studies [17], and the tetrachalcogenide (TaSe4)2I,
for which the magnetic susceptibility above the conven-
tional CDW transition temperature shows pseudogap be-
havior [18,19] without any observable long range charge
order. Indeed, a recent suggestion to understand the pseu-
dogap phase of the cuprate superconductors also invokes
the existence of an unconventional density wave (UDW)
of d-symmetry [20]. Motivated partly by the rich phase
diagram of the high Tc cuprates, significant steps have
already been made towards the theory of UDW in a two-
dimensional electron system [21], typically on a square
lattice [22].

Momentum dependent order parameter in an electron-
hole condensate was first introduced in the context of the
excitonic insulator [23]. Further studies [24,25] were initi-
ated by the discovery of high-Tc superconductors, and the
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orbital antiferromagnetic phase on a square lattice was
proposed [26]. The magnetic response of the orbital anti-
ferromagnet [27] and the so called spin nematic phase [28]
was investigated in a two-dimensional system, as well as
in a two chain ladder [29].

The objective of the present paper is to make the first
steps in developing a detailed theory of UDW-s in quasi-
one-dimensional interacting electron systems. Clearly, the
topology of the Fermi surface is radically different in this
problem than in previous treatments, moreover the strong
anisotropy of transport properties in, and perpendicular to
the linear chain direction is of particular interest. A pre-
liminary report of some of our results has already been
published [30]. The article is organized as follows: in Sec-
tion 2 we define our model, develop its thermodynamics
in mean field theory, and determine conditions for the ap-
pearance of USDW. Section 3 is devoted to the calculation
of the most important correlation functions of the system,
while in Section 4 we pay particular attention to the op-
tical conductivity of the model. Our conclusions are given
in Section 5.

2 Thermodynamics of the model

We start with a quasi-one-dimensional interacting electron
system described by the following one band Hamiltonian:

H =
∑
k,σ

ε(k)a+
k,σak,σ

+
1

2V

∑
k,k′,q
σ,σ′

Ṽ (k,k′,q)a+
k+q,σak,σa

+
k′−q,σ′ak′,σ′ , (1)

where a+
k,σ and ak,σ are creation and annihilation opera-

tors of an electron of momentum k and spin σ, V is the
volume of the sample and the kinetic energy spectrum on
an orthorhombic lattice

ε(k) = −2ta cos(kxa)− 2tb cos(kyb)− 2tc cos(kzc)− µ
(2)

is highly anisotropic (ta � tb, tc). The interaction poten-
tial matrix elements in (1) are:

1
V
Ṽ (k,k′,q) =∫

d3r

∫
d3r′ϕ̄k+q(r)ϕ̄k′−q(r′)V (r− r′)ϕk′ (r

′)ϕk(r),

(3)

where ϕk is Bloch function. In Wannier basis ϕk(r) =
1√
N

∑
R eikRϕ(r−R), where N is the number of cells and

ϕ(r) is the corresponding Wannier function assumed to be
real and an eigenfunction of parity. We note here that in
a tight-binding solid the Wannier function is well local-
ized, leading to a significant dependence of the interaction
matrix element (3) on the incoming electron momenta k

and k′. This turns out to be crucial in order to form an
UDW, and is readily seen from the expansion including
on site and nearest neighbor two center integrals:

N

V
Ṽ (k,k′,q, σ, σ′) = δ−σ,σ′

{
U +

∑
i

[2Vi cos qiδi

+2Ji cos (ki − k′i + qi) δi

+2Fi cos(k
′

i + ki)δi
+2Ci(cos kiδi + cos k′iδi

+ cos(k′i − qi)δi + cos(ki + qi)δi)]
}

+ δσ,σ′
∑
i

(Vi − Ji)(cos qiδi

− cos(ki − k′i + qi)δi). (4)

In the above formula the antisymmetrized (therefore spin
dependent) interaction is given with i = x, y, z and δi =
a, b, c. The (at most) two center integrals are the on site
Hubbard repulsion and the nearest neighbor direct, ex-
change, pair-hopping and bond-charge terms

U =
∫

d3r

∫
d3r′|ϕ(r)|2V (r− r′)|ϕ(r′)|2, (5a)

Vi =
∫

d3r

∫
d3r′|ϕ(r)|2V (r− r′)|ϕ(r′ − ei)|2, (5b)

Ji =
∫

d3r

∫
d3r′ϕ̄(r)ϕ̄(r′ − ei)V (r− r′)ϕ(r′)ϕ(r − ei),

(5c)

Fi =
∫

d3r

∫
d3r′ϕ̄(r)ϕ̄(r′)V (r− r′)ϕ(r′ − ei)ϕ(r − ei),

(5d)

Ci =
∫

d3r

∫
d3r′ϕ̄(r)ϕ̄(r′)V (r− r′)ϕ(r′)ϕ(r − ei),

(5e)

where ei is the lattice vector in the i-direction.
Although due to its rich structure the interaction in

equation (4) is able to support a variety of low temper-
ature phases [31] depending on the Hubbard integrals in
equation (5), we are now interested in constructing the
mean field theory of an USDW. The best nesting vector
for the spectrum (2) is obviously Q = (2kF, π/b, π/c) with
the Fermi wavenumber kF satisfying µ = −2ta cos(akF).
In a DW expectation values of the type 〈a+

k,σak+Q,σ〉 will
not vanish, defining the order parameter of the low tem-
perature phase ∆(k, σ) = |∆(k, σ)|eiφ(k,σ) as

∆(k, σ) =
1
V

′′∑
k′,σ′

Ṽ (k′,k,Q, σ, σ′)〈a+
k′,σ′ak′+Q,σ′〉. (6)

Here the overline indicates complex conjugation and the
double prime over the summation sign restricts kx val-
ues to the interval from −2kF to 0. Then the mean field
Hamiltonian is diagonalized in the usual way, giving rise to
a two band quasiparticle spectrum over the new Brillouin
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zone (0 < kx < 2kF) given by

E±(k) =
ε(k) + ε(k−Q)

2

±

√(
ε(k)− ε(k−Q)

2

)2

+ |∆(k, σ)|2. (7)

The new (effectively noninteracting) fermionic quasiparti-
cles are expressed by the original electrons as

d+kσ = e−iφ(k,σ)u(k, σ)ak,σ + v(k, σ)ak−Q,σ,

d−kσ = e−iφ(k,σ)v(k, σ)ak,σ − u(k, σ)ak−Q,σ, (8)

with

u(k, σ)
v(k, σ) =

√√√√√1
2

1±
ε(k)−ε(k−Q)

2√
( ε(k)−ε(k−Q)

2 )2 + |∆(k, σ)|2

 ·
(9)

Equations (6) and (8) lead to a self consistency condition
for the order parameter known as the gap equation

∆(l, σ′) =
′∑

k,σ

1
V
Ṽ (k−Q, l,Q, σ′, σ)

× ∆(k, σ){f [E+(k, σ)]− f [E−(k, σ)]}

2
√

( ε(k)−ε(k−Q)
2 )2 + |∆(k, σ)|2

, (10)

where the prime indicates that the k sum runs over the
new Brillouin zone only, and f(E) is the Fermi function.

In the followings we suppress the spin index of the or-
der parameter, since in order to describe an SDW with
polarization vector parallel to the z-axis of the spin space,
we can utilize the relation ∆(k,+) = −∆(k,−) = ∆(k).
Moreover, the structure of the gap equation makes it clear
that the relevant wavenumber values in the arguments
of both the gap and the interaction are confined to a
narrow region near the Fermi sheet at +kF. Therefore
the gap equation is in fact an integral equation on the
kx = kF plane of variables ky and kz only. Making use
of the electron spectrum (2) linearized in kx around kF:
ξ(k) = vF(kx−kF)−2tb cos(kyb)−2tc cos(kzc), we obtain
a simplified gap equation (vF = 2ata sin(akF) is the Fermi
velocity):

∆(l) =
′∑
k

1
V
P (k, l)

∆(k) tanh
{
β
2E(k)

}
2E(k)

≈
∫ π/b

−π/b

dky
2π

∫ π/c

−π/c

dkz
2π

∫ vFkF

0

dξ
2πvF

P (k, l)∆(k)

×
tanh

{
β
2

√
ξ2 + |∆(k)|2

}
√
ξ2 + |∆(k)|2

· (11)

Here E(k) =
√

[ξ(k)]2 + |∆(k)|2, β = 1/kBT , we have ne-
glected terms of order (tb,c/ta)2 in the second expression,

and the kernel of the integral equation is

P (k, l)
V

=
P0

N
+
P1

N
cos(kyb) cos(lyb)

+
P2

N
sin(kyb) sin(lyb) +

P3

N
cos(kzc) cos(lzc)

+
P4

N
sin(kzc) sin(lzc), (12)

with coefficients given by

P0 = U − Vy − Vz − Jy − Jz
+ (Vx + Jx)(cos(2kFa) + 1) + 2Fx + 8Cx cos(kFa),

(13a)
P1 = −2Fy + Jy + Vy, (13b)
P2 = 2Fy + Jy + Vy, (13c)
P3 = −2Fz + Jz + Vz , (13d)
P4 = 2Fz + Jz + Vz. (13e)

As is seen above in equation (12), the kernel turns out to
be diagonal on the basis of the leading harmonics on the
(ky, kz) plane. Consequently, the gap will be of the form

∆(k) = ∆0 +∆1 cos(kyb) +∆2 sin(kyb)
+∆3 cos(kzc) +∆4 sin(kzc). (14)

For vanishing order parameter the five components in (11)
decouple completely, and the critical temperature for the
development of each type of gap can easily be evaluated.
For the conventional SDW with constant gap we recover
the well known result

kBT
(0)
c =

2γ
π
vFkFe−2/P0ρ0(0), (15)

with γ = 1.781, the Euler constant, and ρ0(0) = a/πvF is
the electron density of states in the normal state per spin
at the Fermi surface. The critical temperature for the four
kinds of unconventional gap formation (j = 1, ..., 4) is

kBT
(j)
c =

2γ
π
vFkFe−4/Pjρ0(0). (16)

On cooling the system, that type of an SDW will develop
first, for which the Tc is the highest. The condition for the
formation of an USDW of type j is Pj > 2P0. For example
in case of a half filled band an unconventional phase with
the gap function ∆(k) = ∆2 sin(bky) will form if 3

2 (Vy +
Jy) + Fy + Vz + Jz > U + 2Fx. Clearly, a combination of
interchain Coulomb and exchange integrals overwhelming
the on site repulsion will facilitate the development of an
USDW (negative interchain pair-hopping integral favours
a gap with cosine dependence) instead of a conventional
SDW. It may be of interest to consider the competition
with CDW instabilities as well. The effective couplings
for a conventional CDW and for a UCDW are PCDW =
−(U+2Fx−4Vx+4Jx−3Vy−3Vz+Jy+Jz) and PUCDW =
Vy−3Jy±2Fy respectively, where the upper and lower sign
refers to a ky dependent gap function of cosine and sine
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Fig. 1. Quasiparticle energy spectrum of an USDW. E+(k) is given for ∆(k) = ∆1 cos(bky) (left panel), and for ∆(k) =
∆2 sin(bky) (right panel). Other parameters are chosen as ta/∆1,2 = 2, tb/∆1,2 = 0.1 and akF = π/2.
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Fig. 2. The density of states for conventional (dotted line), and unconventional (dashed line) density waves.

form. In particular, we obtain that the USDW is stable
with respect to the UCDW if Jy ∓ Fy > 0.

The quasiparticle energy spectrum from equation (7) is
shown in Figure 1 for the two typical unconventional gap
functions of ky (we neglected any dispersion in kz here
for clarity). The excitation energy vanishes on lines (note
the additional kz-direction in the Brillouin zone) of the
Fermi surface, and this will determine the nature of the
thermodynamics of the system. The corresponding density
of states (DOS) is calculated as

ρ(E)
ρ0(0)

=
∫ π

−π

d(bky)
2π

∫ π

−π

d(ckz)
2π

Re
|E|√

E2 − |∆(k)|2
,

(17)

and is shown in Figure 2 for both the well known
conventional situation and for the unconventional cases
determined analytically by ρ(E)/ρ0(0) = (2|E|/π|∆j |)
×K(|E|/|∆j|) if |E| < |∆j |, and ρ(E)/ρ0(0) =
(2/π)K(|∆j |/|E|) if |E| > |∆j |. In the latter case the DOS
vanishes linearly at the Fermi energy and diverges loga-
rithmically at the maximum gap value, as follows from

the properties of the complete elliptic function of the first
kind.

Assuming that only one kind of gap (either the con-
ventional or one of the four unconventionals, whichever
opens at the highest Tc) persists all the way down to zero
temperature, we can use equation (11) in order to evaluate
the temperature dependence of the gap amplitude. This is
the same for all unconventional gap types, and is shown on
Figure 3 along with the conventional dependence, display-
ing only small differences between the two. At zero tem-
perature the unconventional gap takes the value |∆j(0)| =
(2π/γ

√
e)kBT

(j)
c , leading to a gap maximum to Tc ratio

of 4.28, instead of the ratio 3.52 in the conventional case.
For T � Tc the unconventional gap decreases from its
T = 0 value as |∆j(T )/∆j(0)| = 1− 3ζ(3)[kBT/|∆j(0)|]3,
which is to be contrasted with the exponential correc-
tion for a constant gap. Similar power law behavior is
found for other quantities as well, due to the line nodes
in the excitation spectrum. For example the specific heat
vanishes like T 2 at low temperatures, and normalized
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Fig. 3. The temperature dependence of the gap amplitude for conventional (dotted line) and unconventional (dashed line)
density wave.

to the normal state value we obtain C
(j)
v (T )/C(n)

v (T ) =
[27ζ(3)/π2][kBT/|∆j(0)|], as opposed to the exponential
freezing out for a conventional gap. Close to the tran-
sition temperature the unconventional gap vanishes like
[|∆j(T )|/kBT

(j)
c ]2 = [32π2/21ζ(3)][1 − T/T

(j)
c ], i.e. in a

square root manner with somewhat different prefactor
compared to the conventional case (8π2/7ζ(3)). The mean
field transition leads to a specific heat jump at Tc with the
relative value of ∆C(j)

v /C
(n)
v = 8/7ζ(3) = 0.95, exactly

two third of the conventional value. Due to the presence
of line nodes in the gap function the above thermodynamic
properties are identical to those of a dx2−y2 superconduc-
tor [3] in spite of the different topology of their Fermi
surfaces.

3 Correlation functions and the nature
of the order parameter

At this point it is important to call the attention to the
fact that while in a conventional SDW the order parameter
is proportional to the Fourier component of the magneti-
zation density at the nesting vector Q, an unconventional
order parameter has nothing to do with the magnetiza-
tion. In order to see this we evaluate the magnetization
using the transformation in equation (8):

〈m(Q)〉 = −µB

′∑
k,σ

σ〈a+
k−Q,σak,σ〉

= µB

′∑
k

∆(k) tanh
{
β
2E(k)

}
E(k)

· (18)

It is easily seen that equation (18) yields zero magnetiza-
tion for any of the four unconventional gap functions, as
opposed to the conventional situation leading to 〈m(Q)〉 =
2NµB∆0/P0. This means that an USDW is not accompa-
nied by a spatially periodic modulation of the spin density,

although the expectation value 〈a+
k−Q,σak,σ〉 becomes fi-

nite and the existence of a robust thermodynamic phase
transition is unquestionable. This feature of the uncon-
ventional density waves makes them suitable candidates
for explaining low temperature phase transitions, where
conventional order parameters such as charge-, or spin-
density modulation are not observable, like in α-(BEDT-
TTF)2KHg(SCN)4 [14], or in URu2Si2 [5] respectively.

What kind of physical quantity does then an uncon-
ventional gap correspond to? Again utilizing the gap equa-
tion (11), we can convince ourselves that if for example an
unconventional gap ∆1 cos(kyb) develops at low tempera-
ture, then the quantity

S̃z(q) =
1
2

∑
k,σ

σ sin[b(ky + qy/2)]a+
k,σak+q,σ (19)

assumes a finite expectation value 〈S̃z(Q)〉 = N∆1/P1.
Therefore the Fourier component with wavenumber Q of
the “effective” spin density S̃z(r) plays the role of the or-
der parameter in this unconventional case. Clearly, experi-
mental observation of this order parameter is possible only
in probes coupling directly to this physical quantity. The
situation is rather similar to electronic Raman scattering,
where the photon-electron vertex carries momentum de-
pendence, and measures the effective density correlation
function [9,10], instead of scattering on just density fluctu-
ations. Equation (19), and its real space version suggests
that S̃z is in fact the spin current density, and the low
temperature phase is related to the so called spin nematic
phase [28].

The rest of this chapter will be devoted to the eval-
uation of certain correlation functions which are of par-
ticular interest. We begin with the charge susceptibil-
ity χnn(q, t) = i〈[n(q, t), n(−q, 0)]〉, the autocorrelation
function of the density operator n(q) =

∑
k,σ a

+
k,σak+q,σ.

The quasiparticle contribution to the frequency dependent
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charge susceptibility in the long wavelength limit reads as

χnn(q, ω) =

1
V

′∑
k,σ

[
1
2

(
1 +

ξ(k)ξ(k + q) + Re(∆(k)∆(k + q))
E(k)E(k + q)

)

× {f [E(k + q)]− f [E(k)]}

×
(

1
ω +E(k)−E(k + q)

− 1
ω −E(k) +E(k + q)

)

+
1
2

(
1− ξ(k)ξ(k + q) + Re(∆(k)∆(k + q))

E(k)E(k + q)

)

× {1− f [E(k + q)]− f [E(k)]}

×
(

1
ω +E(k) +E(k + q)

− 1
ω −E(k) −E(k + q)

)]
,

(20)

while for wavenumbers around the nesting vector we ob-
tain

χnn(Q + q, ω) =
1

4V

′∑
k,σ

[
f [E(k + q)]− f [E(k)]
ω +E(k) −E(k + q)

×
(

1− ξ(k)
E(k)

)(
1 +

ξ(k + q)
E(k + q)

)

+
f [E(k)]− f [E(k + q)]
ω −E(k) +E(k + q)

×
(

1 +
ξ(k)
E(k)

)(
1− ξ(k + q)

E(k + q)

)

+
1− f [E(k)]− f [E(k + q)]
ω +E(k) +E(k + q)

×
(

1− ξ(k)
E(k)

)(
1− ξ(k + q)

E(k + q)

)

+
f [E(k)] + f [E(k + q)]− 1
ω −E(k) −E(k + q)

×
(

1 +
ξ(k)
E(k)

)(
1 +

ξ(k + q)
E(k + q)

)]
·

(21)

Since the above two equations correspond to bubble di-
agrams, the analytic structure of the spin susceptibilities
are very similar to equations (20) and (21). For exam-
ple the longitudinal spin susceptibility χSzSz = χnn/4
for all wavelengths, and the transverse spin susceptibil-
ity χS+S− = χnn/2 for short wavelengths. For long wave-
lengths however, we encounter coherence factors different
from those in equation (20), namely the sign of the two
Re(∆(k)∆(k + q)) terms becomes negative.

In the followings we evaluate the above mentioned cor-
relation functions in both the static (first ω → 0, then
q→ 0), and the dynamic (first q→ 0, then ω → 0) limit.

3.1 Susceptibilities in the long wavelength limit

The dynamic limit of the long wavelength charge suscep-
tibility is trivially zero, therefore we begin with the static
limit of equation (20):

χ0S
nn =

2
V

′∑
k,σ

{−f ′[E(k)]}

= g0(0)
∫ ∞
−∞

dE[−f ′(E)]ρ(E)/ρ0(0), (22)

where f ′(E) is the derivative of the Fermi function, and
g0(0) = 2Nρ0(0)/V is the normal state DOS (per unit
volume) at the Fermi energy including spin degeneracy.
The above susceptibility takes this value for T > Tc, and
its temperature dependence is shown in Figure 4 for both
the conventional and the unconventional cases. We note
here, that following superconductivity terminology, equa-
tion (22) is often expressed as χ0S

nn = g0(0)(1− fs), where
fs is the superfluid fraction. In our case of course, con-
densate fraction is more appropriate. Due to the above
mentioned relations between correlation functions, Fig-
ure 4 represents also the longitudinal spin susceptibility,
experimentally accessible through Knight-shift measure-
ment, vanishing at low temperatures. This is in contrast
to the static homogeneous transverse spin susceptibility
χ0S
S+S− = V −1

∑′
k |∆(k)|2/[E(k)]3 = g0(0)/2, which turns

out to be independent of the gap, and consequently of
the temperature. Returning to the charge (or longitu-
dinal spin) susceptibility, equation (22) is evaluated at
low temperatures yielding exponential freezeout for con-
ventional SDW, and χ0S

nn/g0(0) = 2 ln(2)kBT/|∆j(0)| for
the USDW. Close to Tc on the other hand χ0S

nn/g0(0) =
(4T/T (j)

c − 1)/3 for USDW (instead of the conventional
value 2T/T (0)

c − 1).
Wrapping up our discussion of the long wavelength

correlation functions, we consider the dynamic limit of
the transverse spin susceptibility

χ0D
S+S− =

1
V

′∑
k

|∆(k)|2
[E(k)]3

{1− 2f [E(k)]}

=
g0(0)

2

∫ ∞
0

dE
1− 2f(E)

E2

×
∫ π

−π

d(bky)
2π

∫ π

−π

d(ckz)
2π

Re
|∆(k)|2√

E2 − |∆(k)|2
,

(23)

which is nonzero in the DW state, as shown in Fig-
ure 5 for both conventional and unconventional
situations. The susceptibility normalized to its zero
temperature value χ0D

S+S−(T )/[g0(0)/2] = fd is again
the condensate fraction, but now in the dynamic
limit. In order to see the difference compared to
the static condensate fraction, we first realize that
[g0(0)/4](fd− fs) = V −1

∑′
k{−f ′[E(k)]}|∆(k)|2/[E(k)]2,

then consider the limiting values for low and
high temperatures. For T → 0 the dynamic
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Fig. 5. The temperature dependence of the long wavelength dynamic transverse spin susceptibility χ0D
S+S− for conventional

(dotted line) and for unconventional (dashed line) density waves.

condensate fraction fd = 1 − ln(2)kBT/|∆j(0)|
in USDW (the finite temperature correction is ex-
ponentially small for the conventional case). Close
to Tc the dynamic condensate fraction vanishes like
π|∆0|/4kBT for constant gap, and like |∆j |/2kBT for
momentum dependent gap.

3.2 Susceptibilities around the nesting vector

We turn our attention now to the behavior of the short
wavelength correlation functions based on equation (21).
These are of particular interest in describing phenomena
related to the phase transition involving the nesting vec-
tor Q. It is easily seen, that in the normal state (T > Tc)
the charge susceptibility at the nesting vector follows a
logarithmic temperature dependence

χQnn =
1
V

′∑
k,σ

1− 2f [ξ(k)]
2ξ(k)

=
g0(0)

2
ln

2γvFkF

πkBT
(24)

for both conventional and unconventional cases indepen-
dent of the limiting procedure (static or dynamic).

Below the transition temperature we obtain a still
rather simple formula

χQnn =
1
V

′∑
k,σ

1− 2f [E(k)]
2E(k)

− g0(0)
4

f, (25)

incorporating all the variations in the condensate fraction
f , discussed extensively in the previous subsection in all
limits and cases. It is easy to deal with the first term
in equation (25) for a constant gap, since the gap equa-
tion (11) relates just such an expression with the inverse of
the coupling constant. Therefore in the conventional case
χQnn = 2N/V P0 − [g0(0)/4]f , leading to a monotonically
decreasing susceptibility in both the static and dynamic
limit as the temperature is lowered (see Figs. 6 and 7).

In case of a momentum dependent gap, the first term
in equation (25) is not exactly what appears in the gap
equation (11), but at the expense of a correction factor
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we can bring in the inverse coupling constant as in the
conventional case: χQnn = 4N/V Pj − [g0(0)/4](f − δf),
where

δf = 4
∫ π

−π

d(bky)
2π

∫ π

−π

d(ckz)
2π

×
∫ vFkF

0

dERe
1− 2f(E)√
E2 − |∆(k)|2

[
1
2
−
∣∣∣∣∆(k)
∆j

∣∣∣∣2
]
· (26)

This correction factor is evaluated as δf = 1 −
4 ln(2)kBT/|∆j(0)| for low temperatures, and as δf =
(2/3)(1− T/T (j)

c ) close to the critical temperature.
Our results concerning the susceptibility at the nesting

vector are summarized in Figures 6 and 7 for the static and
dynamic limits respectively. In the conventional situation
χQnn ∝ χQSzSz is peaked at the critical temperature sig-
naling the phase transition. Indeed, if we consider the full
spin susceptibility in random phase approximation (RPA),
the Stoner denominator vanishes exactly if we approach

T
(0)
c from above, leading to divergent response. The other

(unconventional) coupling channels do not contribute to
the charge (spin) response due to their momentum de-
pendence. In the unconventional case however, RPA cor-
rections will not lead to divergence, since the dominant
unconventional channel does not couple to charge or spin
density, while the conventional coupling constant is not
strong enough to make the Stoner denominator vanish.
Instead, the autocorrelation function of the effective spin
density S̃z (see e.g. Eq. (19)) will be divergent at T (j)

c

in RPA, as it should if we are to have an unconventional
phase transition.

4 Optical conductivity

The frequency dependent conductivity provides a wealth
of information about both the quasiparticle and the col-
lective excitation spectrum of density wave materials [1].
Therefore in this section we investigate the properties of
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the conductivity tensor σαβ(ω) = Kαβ(q = 0, ω)/iω in
our model of USDW. The electromagnetic kernel con-
sists of so called paramagnetic and diamagnetic parts:
Kαβ = KP

αβ + KD
αβ. The diamagnetic term KD

αβ =
−e2V −1

∑′
k,σm

−1
αβ(k) involves the effective mass tensor

derived from the electronic spectrum (2). The paramag-
netic part KP

αβ = χjαjβ is the correlation function of the
corresponding components of the current operator given
by j(q) = −e

∑
k,σ v(k)a+

k,σak+q,σ in the q → 0 limit,
where the electron velocity is again obtained from equa-
tion (2). The current correlation function turns out to
be given by the same formula as in equation (20), ex-
cept for the different coherence factors and the multi-
plicative term e2vα(k)vβ(k) under the summation. Since
our system is ideal in a sense that it does not include
any source of damping for electrons (for example impu-
rity scattering), the real part of the conductivity con-
sists of a sharp Drude peak and a regular contribution:
Reσαβ(ω) = πDαβδ(ω) + Reσreg

αβ (ω), where the Drude
weight is given by

Dαβ =

e2

V

′∑
k,σ

{
m−1
αβ(k) − vα(k)vβ(k)

|∆(k)|2
[E(k)]3

{1− 2f [E(k)]}
}
.

(27)

The Drude peak is the only component in the normal
state, but its weight decreases below Tc and vanishes com-
pletely at zero temperature. For example in the chain di-
rection the Drude wight is related to the dynamic con-
densate fraction by Dxx = e2g0(0)v2

F(1− fd). The missing
oscillator strength is taken over by the regular component
at finite frequencies:

Reσreg
αβ (ω) = g0(0)

πe2

ω2
tanh

(
|ω|

4kBT

)
×
∫ π

−π

d(bky)
2π

∫ π

−π

d(ckz)
2π

Re
vα(k)vβ(k)|∆(k)|2√

(ω/2)2 − |∆(k)|2
· (28)

In order to obtain characteristic lineshapes for the opti-
cal conductivity tensor, we first realize that it is diagonal,
then consider various gap functions and electric field di-
rections. In case of a conventional SDW the conductivity
is given by

Reσconv
αα (ω > 0) = e2g0(0)v2

α tanh
(

ω

4kBT

)
× π|∆0|2

ω2
Re

1√
(ω/2)2 − |∆0|2

, (29)

where vx = vF, vy =
√

2btb and vz =
√

2ctc. The fre-
quency dependence of the conductivity is the same for all
three directions of the electric field, and is shown in Fig-
ure 8 at zero temperature. We recognize the sharp onset
of absorption at ω = 2|∆0| due to the constant gap.

In the unconventional situations we expect finite
absorption below the maximum gap, since we have low
energy optical excitations around the nodes of the order
parameter. Consider first the conductivity in the chain
direction

Reσunc
xx (ω > 0) =

e2g0(0)v2
F tanh

(
ω

4kBT

)
4|∆j |2
ω3

I

(
2|∆j |
ω

)
, (30)

where I(k) =
∫ π/2

0 dϕ sin2 ϕRe(1 − k2 sin2 ϕ)−1/2, evalu-
ated as I(k < 1) = [K(k) − E(k)]/k2, and I(k > 1) =
[K(1/k)−E(1/k)]/k. This function is plotted in Figure 9
at zero temperature. We see a logarithmic divergence at
the maximum optical gap, and a substantial absorption
below that gap as expected. We note here, that if we con-
sider the conductivity in one of the directions perpendic-
ular to the chain, we obtain the same lineshape if the
unconventional gap varies in the other perpendicular di-
rection. Of course we need to replace vF in equation (30)
by the proper perpendicular velocity. At this point it is
appropriate to remark that we are calculating only quasi-
particle contributions to the conductivity, although it is



176 The European Physical Journal B

1

2

3

4

5

0 1 2 3 4

ω/|∆j |

R
eσ
u
n
c

x
x

(ω
)2
|∆

j
|/
e2
g 0

(0
)v

2 F

Fig. 9. The real part of the complex conductivity of an USDW in the chain direction at T = 0.

0

5

10

15

20

1 2 3 4

ω/|∆2|

R
eσ
s
in
y
y

(ω
)4
|∆

2
|/
e2
g 0

(0
)v

2 y

Fig. 10. The real part of the complex conductivity of an USDW in the y-direction at T = 0, ∆(k) = ∆2 sin(kyb).

known that due to the sliding motion of the condensate a
collective contribution will also be observed in the chain
direction [32]. For example the quasiparticle peak on Fig-
ure 8 will be absorbed by the phason at much lower fre-
quencies. However, if the electric field is perpendicular to
the chains, no such contribution is expected, therefore our
results are directly applicable to the experimental situa-
tion.

Finally, we consider the situation when the electric
field is aligned in that perpendicular direction in which the
order parameter varies. Without loss of generality we can
take this to be the y-direction. There are two possibilities
corresponding to the gap function ∆(k) = ∆1 cos(kyb),
and ∆(k) = ∆2 sin(kyb). Equation (28) leads to the fol-
lowing expressions for the conductivities:

Reσcos
yy (ω > 0) =

e2g0(0)v2
y tanh

(
ω

4kBT

)
8|∆1|2
ω3

Icos

(
2|∆1|
ω

)
, (31)

and

Reσsin
yy (ω > 0) =

e2g0(0)v2
y tanh

(
ω

4kBT

)
8|∆2|2
ω3

Isin

(
2|∆2|
ω

)
, (32)

where Isin(k) =
∫ π/2

0 dϕ sin4 ϕRe(1 − k2 sin2 ϕ)−1/2, and
Icos(k) = I(k)− Isin(k). The former function is evaluated
as Isin(k < 1) = [(2 + k2)K(k)− 2(1 + k2)E(k)]/3k4, and
Isin(k > 1) = [(1 + 2k2)K(1/k) − 2(1 + k2)E(1/k)]/3k3.
We plot these results in Figure 10 and in Figure 11 for
the sine and cosine dependence of the order parameter
respectively. As seen on Figure 10, due to the match-
ing of the k dependences of the gap and the velocity
vy(k) = 2btb sin(kyb) the low frequency conductivity is
suppressed and proportional to ω2, while the logarithmic
divergence is still there at ω = 2|∆2|, as for the chain di-
rection conductivity (see Fig. 9). This reasoning is quite
similar to the one used in explaining the lineshape of the
B1g Raman response in dx2−y2 superconductors [33].
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Fig. 11. The real part of the complex conductivity of an USDW in the y-direction at T = 0, ∆(k) = ∆1 cos(kyb).

In case of a cosine gap on the other hand, the veloc-
ity is zero at the gap maximum, therefore the logarithmic
divergence is cut off at ω = 2|∆1|, and we have a mono-
tonically decreasing conductivity as shown in Figure 11.

5 Conclusions

In this paper we have developed the mean field theory of
unconventional density waves in quasi-one-dimensional in-
teracting electron systems. Although our calculations refer
explicitly to unconventional spin density waves (USDW),
most of the results apply to unconventional charge density
waves as well. We have found that the excitation spectrum
and thermodynamics of our model are identical to those of
a d-wave superconductor, due to the presence of line nodes
in the gap function ∆(ky , kz). Formation of an USDW is
facilitated by a combination of interchain Coulomb and
exchange integrals overwhelming the on site repulsion.

It is important to realize that an USDW is not accom-
panied by a spatially periodic modulation of the spin den-
sity. Instead, an effective spin density plays the role of the
order parameter, which is observable only in probes cou-
pling to this quantity through form factors significantly
dependent on wavenumber. This feature of the uncon-
ventional density waves makes them suitable candidates
for explaining low temperature phase transitions, where
conventional order parameters such as charge-, or spin-
density modulation are not observable. This state of affairs
is sometimes referred to as “hidden order” in the context
of for example URu2Si2 [7], and may be responsible for the
mysterious low temperature phase in α-(ET)2 salts [14],
where neither (conventional) charge, nor spin order has
been established firmly by either X-ray or NMR probes
in spite of the presence of a quasi-one-dimensional part of
their Fermi surface. The above conclusion is also corrob-
orated by our investigation of charge and spin correlation
functions at the nesting vector, which do not diverge at
the critical temperature in random phase approximation,

unlike the effective spin density correlator, which does.
The homogeneous static spin susceptibility shows qualita-
tively the same anisotropic behavior below the transition
temperature as in the conventional case.

Finally, we have calculated the quasiparticle contri-
bution to the frequency dependent conductivity for an
USDW system without quasiparticle damping (collision-
less limit). The lineshape always exhibits absorption for
frequencies below the maximum optical gap in the quasi-
particle spectrum, but varies significantly depending on
the direction of the electric field and on the functional
form of the gap function. These differences can be ex-
ploited in determining the nature of the condensate by
optical spectroscopic tools.

This work was supported by the Hungarian National Research
Fund under grant numbers OTKA T032162 and T029877,
and by the Ministry of Education under grant number FKFP
0029/1999.
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